首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14612篇
  免费   1027篇
  国内免费   1586篇
  2023年   125篇
  2022年   149篇
  2021年   253篇
  2020年   261篇
  2019年   367篇
  2018年   366篇
  2017年   357篇
  2016年   332篇
  2015年   325篇
  2014年   531篇
  2013年   587篇
  2012年   451篇
  2011年   557篇
  2010年   411篇
  2009年   539篇
  2008年   566篇
  2007年   631篇
  2006年   579篇
  2005年   672篇
  2004年   768篇
  2003年   682篇
  2002年   548篇
  2001年   513篇
  2000年   400篇
  1999年   465篇
  1998年   378篇
  1997年   346篇
  1996年   384篇
  1995年   423篇
  1994年   409篇
  1993年   412篇
  1992年   367篇
  1991年   295篇
  1990年   258篇
  1989年   228篇
  1988年   247篇
  1987年   186篇
  1986年   207篇
  1985年   212篇
  1984年   261篇
  1983年   127篇
  1982年   209篇
  1981年   151篇
  1980年   164篇
  1979年   141篇
  1978年   95篇
  1977年   82篇
  1976年   80篇
  1975年   42篇
  1974年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Symbiotic dinitrogen fixation by legume trees represents a substantial N input in agroforestry systems, which may benefit the associated crops. Applying 15N labelling, we studied N transfer via common mycelial networks (CMN) and root exudation from the legume tree Gliricidia sepium to the associated fodder grass Dichantium aristatum . The plants were grown in greenhouse in shared pots in full interaction (treatment FI) or with their root systems separated with a fine mesh that allowed N transfer via CMN only (treatment MY). Tree root exudation was measured separately with hydroponics. Nitrogen transfer estimates were based on the isotopic signature of N ( δ 15N) transferred from the donor. We obtained a range for estimates by calculating transfer with δ 15N of tree roots and exudates. Nitrogen transfer was 3.7–14.0 and 0.7–2.5% of grass total N in treatments FI and MY, respectively. Root δ 15N gave the lower and exudate δ 15N the higher estimates. Transfer in FI probably occurred mainly via root exudation. Transfer in MY correlated negatively with grass root N concentration, implying that it was driven by source-sink relationships between the plants. The range of transfer estimates, depending on source δ 15N applied, indicates the need of understanding the transfer mechanisms as a basis for reliable estimates.  相似文献   
52.
53.
Abstract: Transmitter release was elicited in two ways from cultured cells filled with acetylcholine: (a) in a biochemical assay by successive addition of a calcium ionophore and calcium and (b) electrophysiologically, by electrical stimulation of individual cells and real-time recording with an embryonic Xenopus myocyte. Glioma C6-Bu-1 cells were found to be competent for Ca2+-dependent and quantal release. In contrast, no release could be elicited from mouse neuroblastoma N18TG-2 cells. However, acetylcholine release could be restored when N18TG-2 cells were transfected with a plasmid coding for mediatophore. Mediatophore is a protein of nerve terminal membranes purified from the Torpedo electric organ on the basis of its acetylcholine-releasing capacity. The transfected N18TG-2 cells expressed Torpedo mediatophore in their plasma membrane. In response to an electrical stimulus, they generated in the myocyte evoked currents that were curare sensitive and calcium dependent and displayed discrete amplitude levels, like in naturally occurring synapses.  相似文献   
54.
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate. During waterlogging soil amino acids increased, particularly γ-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) 15N-enriched (0.3–4.3‰) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in 15N (-6.3 to -1.8‰). Lignotubers and roots had δ15N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in 15N (0.1–2.4‰). The 515N signatures of δ15Ntotal soil N and δ15Nsoil NH4+ were in the range 3.7–4.5‰, whereas δ15Nsoil NO3? was significantly (P < 0.05) more enriched in 15N (9.2–9.8‰). It is proposed that there is discrimination against 15N during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.  相似文献   
55.
ABSTRACT

To date, little is known about the impact of season on infant sleep. In higher latitudes, the duration of daily light time varies substantially between different seasons, and environmental light is one potential factor affecting sleep. In this cohort study, one-night polysomnography (PSG) was performed on 72 healthy 8-month-old infants in 2012 and 2013 to study the effect of season on the sleep architecture of young infants in Finland. The children were divided into four subgroups, according to the amount of light during their birth season and the amount of light during the season of the PSG recordings, corresponding to spring, summer, autumn, and winter. We found that the season of birth did not have an impact on the infants’ sleep architecture at 8 months of age, but the season of the PSG recording did have an effect on several sleep variables. In the PSGs conducted during the spring, there was less N3 sleep and more N2 sleep than in the PSGs conducted during the autumn. In addition, there was more fragmented sleep during spring than autumn. According to our data, the season has an effect on the sleep architecture of young infants and should, therefore, be considered when evaluating the PSG findings of young infants. The exact mechanisms behind this novel finding remain unclear, however. The findings imply that infants` sleep is affected by the season or light environment, as is the case in adult sleep. Since potential explanatory factors, such as direct natural or artificial light exposure and the melatonin levels of the infants, were not controlled, more research is needed in the future to better understand this phenomenon.  相似文献   
56.
Aiming at estimating the average N2-fixation in a pasture, ap preciating the great variability due to patchy urine and dung deposition, the in fluence of dairy cow excreta on biological N2-fixation in a perennial ryegrass–white clover mixture was studied using natural urine and dung. Application of urine as well as dung affected the N2-fixation by promoting the growth of grass and thereby the proportion of clover was significantly reduced. Also the proportion of clover-N derived from the atmosphere (pNdfa) was significantly reduced. In control plots clover dry matter constituted between 40 and 50% of the total dry matter production and the pNdfa ranged between 0.8 and 0.9. Addition of urine caused a significant increase in the grass growth rates, which was the primary reason for a decrease in proportion of clover. At the same time pNdfa decreased to 0.2–0.4 followed by an increase resulting in a total reduction of 45% in the N2-fixation in urine affected areas over a period of four months. The dung only affected the N2-fixation for a distance of up to 10 cm from the edge of the dung pats. In this border area the pNdfa decreased from 0.85 to 0.75 during one month after application followed by an increase, so that after three months there was no difference between pNdfa at 0–10 and 10–20 cm distance from the dung hill. The proportion of clover was lower in the 0–10 cm than in the 10–20 cm distance, which totally resulted in a total reduction of 20% in the N2-fixation over a period of four months in the 0–10 cm area around the dung pats. Considering the proportion of a pasture which may by affected by excreta at a stocking density of 4–6 cows ha-1, the length of the grazing period, the frequency of excretion and the area covered by individual patches, it was estimated that the N2-fixation in a grass-clover pasture would be reduced by 10–15% compared to the N2-fixation in a grass-clover sward not exposed to animal excreta.  相似文献   
57.
Soil structural aspects of decomposition of organic matter by micro-organisms   总被引:15,自引:0,他引:15  
Soil architecture is the dominant control over microbially mediated decomposition processes in terrestrial ecosystems. Organic matter is physically protected in soil so that large amounts of well-decomposable compounds can be found in the vicinity of largely starving microbial populations. Among the mechanisms proposed to explain the phenomena of physical protection in soil are adsorption of organics on inorganic clay surfaces and entrapment of materials in aggregates or in places inaccessible to microbes. Indirect evidence for the existence of physical protection in soil is provided by the occurrence of a burst of microbial activity and related increased decomposition rates following disruption of soil structures, either by natural processes such as the remoistening of a dried soil or by human activities such as ploughing. In contrast, soil compaction has only little effect on the transformation of 14C-glucose. Another mechanism of control by soil structure and texture on decomposition in terrestrial ecosystems is through their impact on microbial turnover processes. The microbial population is not only the main biological agent of decomposition in soil, it is also an important, albeit small, pool through which most of the organic matter in soil passes. Estimates on the relative importance of different mechanisms controlling decomposition in soil could be derived from results of combined tracer and modelling studies. However, suitable methodology to quantify the relation between soil structure and biological processes as a function of different types and conditions of soils is still lacking.  相似文献   
58.
  • The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance.
  • In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1‐year‐old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored.
  • Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13C; these are beneficial features to reduce leaf water loss and drought‐induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought.
  • Our findings indicate that growth and δ13C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
  相似文献   
59.
Stem water storage capacity and hydraulic capacitance (CS) play a crucial role in tree survival under drought-stress. To investigate whether CS adjusts to increasing water deficit, variation in stem water content (StWC) was monitored in vivo for 2 years and related to periodical measurements of tree water potential in Mediterranean Quercus ilex trees subjected either to permanent throughfall exclusion (TE) or to control conditions. Seasonal reductions in StWC were larger in TE trees relative to control ones, resulting in greater seasonal CS (154 and 80 kg m−3 MPa−1, respectively), but only during the first phase of the desorption curve, when predawn water potential was above −1.1 MPa. Below this point, CS decreased substantially and did not differ between treatments (<20 kg m−3 MPa−1). The allometric relationship between tree diameter and sapwood area, measured via electrical resistivity tomography, was not affected by TE. Our results suggest that (a) CS response to water deficit in the drought-tolerant Q. ilex might be more important to optimize carbon gain during well-hydrated periods than to prevent drought-induced embolism formation during severe drought stress, and (b) enhanced CS during early summer does not result from proportional increases in sapwood volume, but mostly from increased elastic water.  相似文献   
60.
Abstract Stationary-phase cells of Cryptococcus neoformans displayed two morphological characteristics: virtually all the cells were unbudded even in the early stationary phase and even when grown in rich media, and average cell size increased from that of exponential-phase cells. DNA contents for small and large stationary-phase cells were determined by quantitative fluorescence microscopy after DNA staining with propidium iodide or DAPI. Small cells contained G, DNA, whereas large unbudded cells had either a G2 or G1 DNA content, indicating that Cr. neoformans can enter into the stationary phase from either the G1 or G2 period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号